Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1066221.v1

ABSTRACT

Testing has been central to our response to the COVID-19 pandemic. However, the accuracy of testing relies on standards, including reference materials, proficiency testing schemes, and information and reporting guidelines. The use of standards is a simple, inexpensive, and effective method to ensure reliable test results that inform clinical and public health decisions. Here we describe the central role of standards during the COVID-19 pandemic, where they have enabled population-scale screening, genomic surveillance and measures of immune protection measures. Given these benefits, the Coronavirus Standards Working Group (CSWG) was formed to coordinate standards in SARS-CoV-2 testing. This network of scientists has developed best-practices, reference materials, and conducted proficiency studies to harmonize laboratory performance. We propose that this coordinated development of standards should be prioritized as a key early step in the public health response to future pandemics that is necessary for reliable, large-scale testing for infectious disease.


Subject(s)
COVID-19
2.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.161088504.46456502.v1

ABSTRACT

Background: Following the first detection of SARS-CoV-2 in passengers arriving from Europe on 19 March 2020, Madagascar took several mitigation measures to limit the spread of the virus in the country. Methods: Nasopharyngeal and/or oropharyngeal swabs were collected from travellers to Madagascar, suspected SARS-CoV-2 cases, and contact of confirmed cases. Swabs were tested at the national reference laboratory using real-time RT-PVR. Data collected from patients were entered in an electronic database for subsequent statistical analysis. All distribution of laboratory confirmed cases were mapped and six genomes of viruses were fully sequenced. Results: Overall, 26,415 individuals were tested for SARS-CoV-2 between 18 March and 18 September 2020, of whom 21.0% (5,553/26,145) returned positive. Among laboratory-confirmed SARS-CoV-2 positive patients, the median age was 39 years (CI95%: 28-52), and 56.6% (3,311/5,553) were asymptomatic at the time of sampling. The probability of testing positive increased with age with the highest adjusted odds ratio of 2.2 [95% CI: 1.9-2.5] for individuals aged 49 years and more. Viral strains sequenced belong to clades 19A, 20A, and 20B in favour of several independent introduction of viruses. Conclusions. Our study describes the first wave of the COVID-19 in Madagascar. Despite early strategies in place Madagascar could not avoid the introduction and spread of the virus. More studies are needed to estimate the true burden of disease and make public health recommendations for a better preparation to another wave.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.07.030551

ABSTRACT

ABSTRACT Background Metagenomic next generation sequencing (mNGS) has enabled the rapid, unbiased detection and identification of microbes without pathogen-specific reagents, culturing, or a priori knowledge of the microbial landscape. mNGS data analysis requires a series of computationally intensive processing steps to accurately determine the microbial composition of a sample. Existing mNGS data analysis tools typically require bioinformatics expertise and access to local server-class hardware resources. For many research laboratories, this presents an obstacle, especially in resource limited environments. Findings We present IDseq, an open source cloud-based metagenomics pipeline and service for global pathogen detection and monitoring ( https://idseq.net ). The IDseq Portal accepts raw mNGS data, performs host and quality filtration steps, then executes an assembly-based alignment pipeline which results in the assignment of reads and contigs to taxonomic categories. The taxonomic relative abundances are reported and visualized in an easy-to-use web application to facilitate data interpretation and hypothesis generation. Furthermore, IDseq supports environmental background model generation and automatic internal spike-in control recognition, providing statistics which are critical for data interpretation. IDseq was designed with the specific intent of detecting novel pathogens. Here, we benchmark novel virus detection capability using both synthetically evolved viral sequences, and real-world samples, including IDseq analysis of a nasopharyngeal swab sample acquired and processed locally in Cambodia from a tourist from Wuhan, China, infected with the recently emergent SARS-CoV-2. Conclusion The IDseq Portal reduces the barrier to entry for mNGS data analysis and enables bench scientists, clinicians, and bioinformaticians to gain insight from mNGS datasets for both known and novel pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL